V = 2638.8 (3) Å³

Mo $K\alpha$ radiation

 $0.41 \times 0.20 \times 0.19 \text{ mm}$

8421 measured reflections

2319 independent reflections

2053 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.70 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int}=0.023$

170 parameters

 $\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$

Z = 4

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[(μ_2 -4,4'-bipyridine- $\kappa^2 N$:N')bis(μ_2 -2-phenoxypropionato- $\kappa^2 O$:O')cobalt(II)]

Jin-Bei Shen,^a Jia-Lu Liu^a and Guo-Liang Zhao^{a,b}*

^aCollege of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China, and ^bZhejiang Normal University Xingzhi College, Jinhua, Zhejiang 321004, People's Republic of China Correspondence e-mail: sky53@zjnu.cn

Received 29 September 2011; accepted 17 October 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.027; wR factor = 0.068; data-to-parameter ratio = 13.6.

In the polymeric title compound, $[Co(C_9H_9O_3)_2(C_{10}H_8N_2)]_n$ the Co^{II} ion is located on a twofold rotation axis and is sixcoordinated by two N atoms from two 4,4'-bipyridine (4,4'bipy) ligands in axial positions and by four O atoms from four 2-phenoxypropionate (POPA) anions in equatorial positions. defining a slightly distorted octahedral geometry. The carboxylate group of the POPA anion displays a bismonodentate mode, linking pairs of Co^{II} ions into a chain parallel to [001]. Adjacent chains are connected in a perpendicular manner through 4,4'-bipy ligands into layers parallel to (100). The 4,4'-bipy ligand is likewise located on a twofold rotation axis, with a dihedral angle between the two pyridine rings of 57.05 (7)°. $C-H \cdots O$ hydrogen-bonding interactions are present within the layers. $\pi - \pi$ stacking interactions between the POPA benzene rings of neighbouring layers [centroid-to-centroid distance = 3.976 (3) Å and planeto-plane distance = 3.618(3) Å] stabilize the packing of the structure.

Related literature

For background to phenoxyalkanoic acids, see: Müller & Buser (1997). For other metal complexes derived from phenoxypropionic acid, see: Shen *et al.* (2011*a,b,c,d*). For a related cobalt complex, see: Zhuang *et al.* (2007).

Experimental

Crystal data

 $\begin{bmatrix} \text{Co}(\text{C}_9\text{H}_9\text{O}_3)_2(\text{C}_{10}\text{H}_8\text{N}_2) \end{bmatrix} \\ M_r = 545.44 \\ \text{Monoclinic, } C2/c \\ a = 23.6748 (14) \text{ Å} \\ b = 11.6289 (7) \text{ Å} \\ c = 9.6440 (6) \text{ Å} \\ \beta = 96.353 (4)^{\circ} \\ \end{bmatrix}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.847, T_{\rm max} = 0.879$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.068$ S = 1.062319 reflections

Table 1

Selected bond lengths (Å).

Co1-O3		2.0357 (12)	Co1-N1	2.1989 (19)
Co1-O2 ⁱ		2.1275 (11)	Co1-N2	2.2051 (19)
c	1 (1)			

Symmetry code: (i) -x + 1, -y + 1, -z + 2.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$ \begin{array}{c} \hline C10-H10\cdotsO2^{i} \\ C15-H15A\cdotsO3^{i} \end{array} $	0.93	2.51	3.079 (2)	120
	0.93	2.38	3.272 (2)	159

Symmetry code: (i) -x + 1, -y + 1, -z + 2.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in

metal-organic compounds

SHELXTL (Sheldrick, 2008) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2537).

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Müller, M. D. & Buser, H. R. (1997). Environ. Sci. Technol. 31, 1953–1959.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Shen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011a). Acta Cryst. E67, m1234.

Shen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011b). Acta Cryst. E67, m1319.

Shen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011c). Acta Cryst. E67, m1320. Shen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011d). Acta Cryst. E67, m1321.

- Westrip, S. P. (2010). J. Appl. Cryst. **43**, 920–925.
- Zhuang, W.-J., Zheng, X.-J., Li, L.-C., Liao, D.-Z., Ma, H. & Jin, L.-P. (2007). CrystEngComm, 9, 653-667.

supplementary materials

Acta Cryst. (2011). E67, m1587-m1588 [doi:10.1107/S1600536811042875]

Poly[(μ_2 -4,4'-bipyridine- $\kappa^2 N$:N')bis(μ_2 -2-phenoxypropionato- $\kappa^2 O$:O')cobalt(II)]

J.-B. Shen, J.-L. Liu and G.-L. Zhao

Comment

The group of phenoxyalkanoic acids include important herbicides. The desired biological activity is largely dependent on the length of the carbon chain of the alkanoic acid, the nature of the phenoxy group, and the position of its attachment to the carbon chain (Müller & Buser, 1997). Therefore the structures of metal complexes of 2-phenoxypropionic acid became interesting for us. Recently, we have reported some results in this regard (Shen *et al.*, 2011*a*,*b*,*c*,*d*). Here, we describe a new Co^{II} complex with 4,4'-bipyridine (4,4'-bipy) as a co-ligand.

The structure of the polymeric title complex is shown in Fig. 1. The Co^{II} ion is located on a twofold rotation axis and is six-coordinated by four carboxylate O atoms from four POPA ligands and two N atoms of two 4,4'-bipy ligands in an octahedral geometry. The Co—O distances are 2.0357 (12) and 2.1275 (11) Å, and the Co—N distances are 2.1989 (19) and 2.2051 (19) Å, all of which are similar to related structures (Zhuang *et al.*, 2007). The 4,4'-bipy ligand exhibits symmetry 2, with a dihedral angle between the two pyridine rings of 57.05 (7)°. The carboxylate groups of the POPA anions display a bis-monodentate mode, bridging pairs of Co^{II} ions into chains parallel to [001]. The 4,4'-bipy molecules connect these chains perpendicularly, resulting in a layered arrangement parallel to (100) (Fig. 2).

As also shown in Fig. 2, intra-layer C—H···O hydrogen bonds between the C atoms of 4,4'-bipy ligands and carboxylate O atoms are present. Adjacent layers are stacked along [100] through π — π interactions between benzene rings of the POPA anions, with centroid–centroid and plane to plane distance of 3.976 (3) Å and 3.618 (3) Å, respectively.

Experimental

Reagents and solvents used were of commercially available quality and were not further purified before using. 2-Phenoxyproionic acid (0.332 g, 2 mmol), 4,4'-bipy (0.156 g, 1 mmol) were mixed in distilled water (30 ml), NaOH (1 *M*) was added dropwise to the solution to adjust a pH of 5–6, then $CoCl_2.6H_2O$ (0.238 g, 1 mmol) was added and the mixture sealed in a 50 ml stainless steel reactor and kept at 433 K for 3 d. The reactor was then cooled to room temperature at a speed of 5 K h⁻¹. Red single crystals were obtained in high yield and filtered off from the solution.

Refinement

The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aliphatic C—H = $0.96 \text{ Å} (U_{iso}(H) = 1.5U_{eq}(C))$, aromatic C—H = $0.93 \text{ Å} (U_{iso}(H) = 1.2U_{eq}(C))$].

Figures

Fig. 1. The molecular structure of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The atoms labelled with the suffix A, B, C, D, E, F, G are related by the symmetry operations (-x + 1, y, -z + 1.5), (-x + 1, -y + 1, -z + 2), (x, -y + 1, z - 1/2), (x, y + 1, z), (-x + 1, 1 + y, -z + 1.5), (x, y - 1, z), (-x + 1, y - 1, -z + 1.5), respectively.

Fig. 2. The layered arrangement of title compound, showing intralayer C—H…O interactions.

$Poly[(\mu_2-4,4^{i}-bipyridine-\kappa^2N:N^{i})bis(\mu_2-2-phenoxypropionato-\kappa^2O:O^{i})cobalt(II)]$

Crystal data	
[Co(C ₉ H ₉ O ₃) ₂ (C ₁₀ H ₈ N ₂)]	F(000) = 1132
$M_r = 545.44$	$D_{\rm x} = 1.373 \ {\rm Mg \ m}^{-3}$
Monoclinic, C2/c	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 3897 reflections
<i>a</i> = 23.6748 (14) Å	$\theta = 1.7 - 25.0^{\circ}$
b = 11.6289 (7) Å	$\mu = 0.70 \text{ mm}^{-1}$
c = 9.6440 (6) Å	T = 296 K
$\beta = 96.353 \ (4)^{\circ}$	Block, red
$V = 2638.8 (3) \text{ Å}^3$	$0.41\times0.20\times0.19~mm$
Z = 4	

Data collection

Bruker APEXII CCD diffractometer	2319 independent reflections
Radiation source: fine-focus sealed tube	2053 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.023$
ϕ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -28 \rightarrow 26$
$T_{\min} = 0.847, T_{\max} = 0.879$	$k = -13 \rightarrow 11$
8421 measured reflections	$l = -11 \rightarrow 11$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.027$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.068$	H-atom parameters constrained
<i>S</i> = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.0338P)^2 + 1.1007P]$ where $P = (F_o^2 + 2F_c^2)/3$
2319 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
170 parameters	$\Delta \rho_{\text{max}} = 0.21 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.19 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and is	otropic	or ed	auivalent	isotror	oic dis	placement	parameters	$(\AA^2$)
1		000.0000000		011.0010	0. 00	100000000000000000000000000000000000000	1001.00		p		(/

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$
Co1	0.5000	0.52263 (3)	0.7500	0.02374 (11)
O3	0.55380 (5)	0.53098 (11)	0.92961 (11)	0.0393 (3)
С9	0.58754 (7)	0.49847 (13)	1.02991 (16)	0.0281 (4)
N1	0.5000	0.71171 (16)	0.7500	0.0290 (4)
C8	0.67426 (10)	0.6225 (2)	1.0358 (3)	0.0794 (8)
H8A	0.7136	0.6252	1.0199	0.119*
H8B	0.6708	0.6423	1.1312	0.119*
H8C	0.6530	0.6762	0.9751	0.119*
C7	0.65102 (8)	0.50059 (19)	1.0060 (2)	0.0493 (5)
H7	0.6548	0.4805	0.9088	0.059*
C11	0.45124 (8)	0.89365 (15)	0.76775 (19)	0.0384 (4)
H11	0.4177	0.9315	0.7812	0.046*
01	0.68453 (5)	0.42260 (14)	1.09706 (14)	0.0555 (4)
C10	0.45282 (7)	0.77274 (15)	0.76537 (19)	0.0367 (4)
H10	0.4194	0.7328	0.7749	0.044*
C6	0.64660 (10)	0.2551 (2)	0.9605 (3)	0.0699 (7)
H6	0.6246	0.3010	0.8965	0.084*
C1	0.64664 (11)	0.1349 (3)	0.9439 (3)	0.0883 (9)
H1	0.6251	0.1027	0.8671	0.106*
C5	0.67937 (8)	0.3048 (2)	1.0721 (2)	0.0536 (6)
C4	0.71055 (10)	0.2322 (2)	1.1675 (2)	0.0651 (7)
H4	0.7324	0.2641	1.2440	0.078*
C3	0.70968 (11)	0.1124 (3)	1.1507 (3)	0.0810 (8)
H3	0.7308	0.0661	1.2158	0.097*

supplementary materials

C2	0.67765 (12)	0.0629 (3)	1.0379 (4)	0.0906 (9)
H2	0.6770	-0.0164	1.0256	0.109*
C12	0.5000	0.95685 (19)	0.7500	0.0307 (5)
O2	0.57552 (5)	0.47394 (10)	1.14927 (11)	0.0339 (3)
C13	0.5000	0.08758 (19)	0.7500	0.0294 (5)
N2	0.5000	0.33300 (16)	0.7500	0.0311 (4)
C14	0.48321 (8)	0.15074 (14)	0.86106 (17)	0.0390 (4)
H14A	0.4708	0.1130	0.9371	0.047*
C15	0.48508 (8)	0.27175 (15)	0.85836 (17)	0.0380 (4)
H15A	0.4754	0.3115	0.9360	0.046*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Co1	0.03125 (19)	0.01885 (18)	0.02070 (16)	0.000	0.00108 (12)	0.000
O3	0.0410 (7)	0.0518 (8)	0.0235 (6)	0.0044 (6)	-0.0037 (5)	-0.0006 (5)
C9	0.0328 (9)	0.0268 (10)	0.0250 (8)	-0.0021 (7)	0.0040 (7)	-0.0023 (6)
N1	0.0354 (11)	0.0228 (11)	0.0283 (10)	0.000	0.0020 (8)	0.000
C8	0.0486 (14)	0.088 (2)	0.1002 (19)	-0.0260 (13)	0.0020 (13)	0.0290 (16)
C7	0.0350 (11)	0.0761 (16)	0.0378 (10)	0.0012 (10)	0.0077 (8)	0.0059 (10)
C11	0.0383 (10)	0.0266 (10)	0.0519 (10)	0.0060 (8)	0.0123 (8)	0.0033 (8)
01	0.0366 (8)	0.0757 (11)	0.0525 (8)	0.0119 (7)	-0.0024 (6)	-0.0041 (8)
C10	0.0350 (10)	0.0263 (10)	0.0497 (10)	-0.0025 (8)	0.0088 (8)	0.0017 (8)
C6	0.0475 (14)	0.096 (2)	0.0644 (15)	0.0133 (13)	0.0001 (11)	-0.0174 (14)
C1	0.0584 (17)	0.102 (2)	0.103 (2)	0.0051 (16)	0.0024 (15)	-0.0423 (19)
C5	0.0315 (10)	0.0771 (17)	0.0535 (12)	0.0076 (10)	0.0104 (9)	-0.0093 (11)
C4	0.0461 (13)	0.086 (2)	0.0623 (14)	0.0115 (12)	0.0026 (11)	-0.0031 (13)
C3	0.0592 (16)	0.084 (2)	0.101 (2)	0.0153 (15)	0.0129 (15)	0.0090 (17)
C2	0.0567 (17)	0.079 (2)	0.139 (3)	0.0018 (16)	0.0263 (18)	-0.024 (2)
C12	0.0462 (15)	0.0207 (14)	0.0255 (11)	0.000	0.0046 (10)	0.000
O2	0.0351 (7)	0.0398 (7)	0.0276 (6)	0.0029 (5)	0.0070 (5)	0.0071 (5)
C13	0.0388 (14)	0.0197 (13)	0.0294 (11)	0.000	0.0022 (10)	0.000
N2	0.0419 (12)	0.0229 (11)	0.0282 (10)	0.000	0.0019 (9)	0.000
C14	0.0627 (12)	0.0250 (10)	0.0312 (9)	0.0026 (9)	0.0133 (8)	0.0049 (7)
C15	0.0605 (12)	0.0258 (10)	0.0292 (8)	0.0051 (9)	0.0119 (8)	-0.0018 (7)

Geometric parameters (Å, °)

Co1—O3 ⁱ	2.0357 (12)	C6—C5	1.382 (3)
Co1—O3	2.0357 (12)	C6—C1	1.407 (4)
Co1—O2 ⁱⁱ	2.1275 (11)	С6—Н6	0.9300
Co1—O2 ⁱⁱⁱ	2.1275 (11)	C1—C2	1.384 (4)
Co1—N1	2.1989 (19)	C1—H1	0.9300
Co1—N2	2.2051 (19)	C5—C4	1.398 (3)
O3—C9	1.243 (2)	C4—C3	1.402 (4)
C9—O2	1.2489 (18)	C4—H4	0.9300
С9—С7	1.546 (2)	C3—C2	1.381 (4)
N1—C10	1.3453 (19)	С3—Н3	0.9300

N1	1.3453 (19)	C2—H2	0.9300
C8—C7	1.537 (3)	C12—C11 ⁱ	1.395 (2)
C8—H8A	0.9600	C12—C13 ^{iv}	1.520 (3)
C8—H8B	0.9600	O2—Co1 ⁱⁱⁱ	2.1275 (11)
C8—H8C	0.9600	C13—C14	1.3924 (19)
C7—O1	1.438 (2)	C13—C14 ⁱ	1.392 (2)
С7—Н7	0.9800	C13—C12 ^v	1.520 (3)
C11—C12	1.395 (2)	N2—C15 ⁱ	1.3439 (19)
C11—C10	1.407 (2)	N2—C15	1.3439 (19)
C11—H11	0.9300	C14—C15	1.408 (2)
O1—C5	1.394 (3)	C14—H14A	0.9300
C10—H10	0.9300	C15—H15A	0.9300
O3 ⁱ —Co1—O3	174.53 (7)	N1-C10-C11	123.57 (16)
O3 ⁱ —Co1—O2 ⁱⁱ	95.10 (5)	N1—C10—H10	118.2
O3—Co1—O2 ⁱⁱ	84.80 (5)	C11—C10—H10	118.2
O3 ⁱ —Co1—O2 ⁱⁱⁱ	84.80 (5)	C5—C6—C1	119.8 (3)
O3—Co1—O2 ⁱⁱⁱ	95.10 (5)	С5—С6—Н6	120.1
O2 ⁱⁱ —Co1—O2 ⁱⁱⁱ	177.85 (6)	С1—С6—Н6	120.1
O3 ⁱ —Co1—N1	87.26 (4)	C2—C1—C6	122.3 (3)
O3—Co1—N1	87.26 (4)	С2—С1—Н1	118.9
O2 ⁱⁱ —Co1—N1	88.93 (3)	С6—С1—Н1	118.9
O2 ⁱⁱⁱ —Co1—N1	88.93 (3)	C6—C5—O1	125.2 (2)
O3 ⁱ —Co1—N2	92.74 (4)	C6—C5—C4	118.1 (2)
O3—Co1—N2	92.74 (4)	O1—C5—C4	116.7 (2)
O2 ⁱⁱ —Co1—N2	91.07 (3)	C5—C4—C3	121.6 (2)
O2 ⁱⁱⁱ —Co1—N2	91.07 (3)	C5—C4—H4	119.2
N1—Co1—N2	180.0	С3—С4—Н4	119.2
C9—O3—Co1	159.26 (12)	C2—C3—C4	120.4 (3)
O3—C9—O2	126.46 (16)	С2—С3—Н3	119.8
O3—C9—C7	115.51 (14)	С4—С3—Н3	119.8
O2—C9—C7	117.75 (15)	C3—C2—C1	118.0 (3)
C10—N1—C10 ⁱ	116.3 (2)	С3—С2—Н2	121.0
C10—N1—Co1	121.84 (10)	C1—C2—H2	121.0
C10 ⁱ —N1—Co1	121.84 (10)	C11—C12—C11 ⁱ	116.4 (2)
С7—С8—Н8А	109.5	C11—C12—C13 ^{iv}	121.80 (10)
С7—С8—Н8В	109.5	C11 ⁱ —C12—C13 ^{iv}	121.80 (10)
H8A—C8—H8B	109.5	C9—O2—Co1 ⁱⁱⁱ	134.85 (11)
С7—С8—Н8С	109.5	C14—C13—C14 ⁱ	116.3 (2)
Н8А—С8—Н8С	109.5	C14—C13—C12 ^v	121.84 (10)
H8B—C8—H8C	109.5	C14 ⁱ —C13—C12 ^v	121.84 (10)
01—C7—C8	107.80 (18)	C15 ⁱ —N2—C15	116.0 (2)
O1—C7—C9	112.24 (15)	C15 ⁱ —N2—Co1	122.01 (10)
C8—C7—C9	108.70 (17)	C15—N2—Co1	122.01 (10)

supplementary materials

O1—C7—H7	109.4	C13—C14—C15	120.04 (15)			
С8—С7—Н7	109.4	C13—C14—H14A	120.0			
С9—С7—Н7	109.4	C15-C14-H14A	120.0			
C12—C11—C10	120.05 (16)	N2-C15-C14	123.75 (15)			
C12—C11—H11	120.0	N2—C15—H15A	118.1			
C10—C11—H11	120.0	C14—C15—H15A	118.1			
C5—O1—C7	118.84 (16)					
O2 ⁱⁱ —Co1—O3—C9	-81.2 (3)	C1—C6—C5—C4	-1.7 (3)			
O2 ⁱⁱⁱ —Co1—O3—C9	101.0 (3)	C7—O1—C5—C6	4.0 (3)			
N1—Co1—O3—C9	-170.3 (3)	C7—O1—C5—C4	-176.79 (16)			
N2—Co1—O3—C9	9.7 (3)	C6—C5—C4—C3	0.9 (3)			
Co1—O3—C9—O2	-96.6 (3)	O1—C5—C4—C3	-178.37 (19)			
Co1—O3—C9—C7	89.7 (3)	C5—C4—C3—C2	0.1 (4)			
O3 ⁱ —Co1—N1—C10	65.25 (10)	C4—C3—C2—C1	-0.3 (4)			
O3—Co1—N1—C10	-114.75 (10)	C6—C1—C2—C3	-0.4 (4)			
O2 ⁱⁱ —Co1—N1—C10	160.41 (10)	C10-C11-C12-C11 ⁱ	-0.79 (12)			
O2 ⁱⁱⁱ —Co1—N1—C10	-19.59 (10)	C10-C11-C12-C13 ^{iv}	179.21 (12)			
O3 ⁱ —Co1—N1—C10 ⁱ	-114.75 (10)	O3—C9—O2—Co1 ⁱⁱⁱ	-2.7 (3)			
O3—Co1—N1—C10 ⁱ	65.25 (10)	C7—C9—O2—Co1 ⁱⁱⁱ	170.92 (12)			
O2 ⁱⁱ —Co1—N1—C10 ⁱ	-19.59 (10)	O3 ⁱ —Co1—N2—C15 ⁱ	56.44 (11)			
O2 ⁱⁱⁱ —Co1—N1—C10 ⁱ	160.41 (10)	O3—Co1—N2—C15 ⁱ	-123.56 (11)			
O3—C9—C7—O1	-156.70 (16)	O2 ⁱⁱ —Co1—N2—C15 ⁱ	-38.72 (10)			
O2—C9—C7—O1	29.0 (2)	O2 ⁱⁱⁱ —Co1—N2—C15 ⁱ	141.28 (10)			
O3—C9—C7—C8	84.2 (2)	O3 ⁱ —Co1—N2—C15	-123.56 (11)			
O2—C9—C7—C8	-90.2 (2)	O3—Co1—N2—C15	56.44 (11)			
C8—C7—O1—C5	-167.58 (16)	O2 ⁱⁱ —Co1—N2—C15	141.28 (11)			
C9—C7—O1—C5	72.7 (2)	O2 ⁱⁱⁱ —Co1—N2—C15	-38.72 (11)			
C10 ⁱ —N1—C10—C11	-0.85 (13)	C14 ⁱ —C13—C14—C15	-1.47 (13)			
Co1—N1—C10—C11	179.15 (13)	C12 ^v —C13—C14—C15	178.53 (13)			
C12—C11—C10—N1	1.7 (3)	C15 ⁱ —N2—C15—C14	-1.59 (14)			
C5—C6—C1—C2	1.5 (4)	Co1-N2-C15-C14	178.41 (14)			
C1—C6—C5—O1	177.6 (2)	C13—C14—C15—N2	3.2 (3)			
Symmetry codes: (i) $-x+1$, y , $-z+3/2$; (ii) x , $-y+1$, $z-1/2$; (iii) $-x+1$, $-y+1$, $-z+2$; (iv) x , $y+1$, z ; (v) x , $y-1$, z .						

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C10—H10…O2 ⁱⁱⁱ	0.93	2.51	3.079 (2)	120.
C15—H15A···O3 ⁱⁱⁱ	0.93	2.38	3.272 (2)	159.
Symmetry codes: (iii) $-x+1$, $-y+1$, $-z+2$.				

Fig. 1

